Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Lucia Perašínová, ${ }^{\text {a }}$ Ingrid

 Svoboda, ${ }^{\text {b }}$ Daniel Végh, ${ }^{\text {c }}$ Tomaš Solčan ${ }^{c}$ and Jozef Kožíšek ${ }^{\text {a }}$${ }^{\mathrm{a}}$ Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovak Republic, ${ }^{\mathbf{b}}$ Strukturforschung, FB11
Material- und Geowissenschaften, Technische Universität Darmstadt, Petersenstrasse 23, D-64287 Darmstadt, Germany, and ${ }^{\text {c Institute of }}$ Organic Chemistry, Catalysis and Petrochemistry, Faculty of Chemical Technology, Slovak Technical University, Radlinskeho 9, Bratislava 81237, Slovak Republic

Correspondence e-mail:
lucia.perasinova@stuba.sk

Key indicators

Single-crystal X-ray study
$T=299 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.038$
$w R$ factor $=0.106$
Data-to-parameter ratio $=11.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
1,2,4,5-Tetrafluoro-3,6-bis(nitromethyl)benzene

The title compound, $\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~F}_{4} \mathrm{~N}_{2} \mathrm{O}_{4}$, crystallizes on a site of crystallographic inversion symmetry.

Comment

Interest in the field of crystal engineering, with the prediction of crystal structures and the design of organic compounds with specific properties, has increased significantly in the last few years. In the last decade, interactions of fluorine substituents in a variety of organic compounds have gained interest in life sciences and solid-state materials (Reichenbächer et al., 2005).

(I)

In the crystal structure of the centrosymmetric title compound, (I), the $\mathrm{C} 1-\mathrm{F} 1, \mathrm{C} 2-\mathrm{F} 3$ and $\mathrm{C} 4-\mathrm{N} 1$ bond distances (Table 1) are in quite good agreement with those found in the Cambridge Structural Database (CSD; Version 5.27, 2006 release; Allen, 2002); for the compound with refcode DOBQAM (Martin et al., 1999), $\mathrm{C}-\mathrm{F}$ bond distances fall in the range $1.329-1.346 \AA$ and $\mathrm{C}-\mathrm{N}=1.498 \AA$, and in an analogous compound containing aromatic rings, $\mathrm{C}-\mathrm{F}$ distances are in the range 1.340-1.349 \AA (CSD refcode LABROW; Krebs et al., 2003).

The crystal structure is stabilized by weak intramolecular and intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Figure 1
The numbering scheme of (I). Displacement ellipsoids are drawn at the 10% probability level. [Symmetry code: (i) $2-x, 1-y, 1-z$.]

Figure 2
Packing diagram of (I), viewed along the c axis. Hydrogen-bonding interactions are indicated by dashed lines. Symmetry code as in Table 2.

Experimental

Nitromethane ($5.9 \mathrm{~g}, 0.097 \mathrm{~mol}$) in DMSO (15 ml) was added dropwise to a suspension of $\mathrm{NaH}(2.32 \mathrm{~g}, 0.097 \mathrm{~mol})$ in DMSO (50 ml) with stirring. After the bubbling had subsided ($c a 1 \mathrm{~h}$), hexafluorobenzene ($3 \mathrm{~g}, 0.016 \mathrm{~mol}$) was added; the mixture was stirred for 20 h at room temperature and then poured into ice-water, acidified with $6 M \mathrm{HCl}$, then extracted with ethyl acetate. The organic extract was washed with water and brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent in a vacuum gave a residue (mixture of mono- and disubstitued derivatives), which was separated by column chromatography to afford 1.6 g of 1,2,3,4,5-pentafluoro-6-(nitromethyl)benzene (44%) and 1.07 g of (I) (25%). The product was recrystallized from ethanol to afford 1.07 g of (I).

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~F}_{4} \mathrm{~N}_{2} \mathrm{O}_{4} \\
& M_{r}=268.13 \\
& \text { Monoclinic, } C 2 / c \\
& a=17.570(4) \AA \\
& b=7.2870(15) \AA \\
& c=8.5746(17) \AA \\
& \beta=18.62(3) \AA \\
& V=963.7(4) \AA^{\circ}
\end{aligned}
$$

$$
Z=4
$$

$$
\begin{aligned}
& D_{x}=1.848 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Mo $K \alpha$ radiation
$\mu=0.20 \mathrm{~mm}^{-1}$
$T=299$ (2) K
Block, colourless
$0.5 \times 0.5 \times 0.32 \mathrm{~mm}$

Data collection

Oxford Diffraction Xcalibur CCD diffractometer
ω and φ scans
Absorption correction: analytical (Clark \& Reid, 1995)
$T_{\text {min }}=0.877, T_{\text {max }}=0.958$

Refinement

[^1]Table 1
Selected geometric parameters ($\left(\mathrm{A},{ }^{\circ}\right)$.

F1-C1	$1.339(2)$	$\mathrm{N} 1-\mathrm{C} 4$	$1.494(2)$
F2-C3	$1.337(2)$	$\mathrm{C} 2-\mathrm{C} 1$	$1.376(2)$
N1-O1	$1.198(2)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.377(3)$
N1-O2	$1.200(2)$	$\mathrm{C} 2-\mathrm{C} 4$	$1.495(2)$
O1-N1-O2	$123.6(2)$	$\mathrm{F} 1-\mathrm{C} 1-\mathrm{C} 2$	$119.5(2)$
F2-C3-C2	$119.8(2)$		

Table 2
Hydrogen-bond geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 4-\mathrm{H} 4 A \cdots \mathrm{~F} 2$	0.97	2.54	$2.830(3)$	97
$\mathrm{C} 4-\mathrm{H} 4 B \cdots \mathrm{~F} 1$	0.97	2.48	$2.826(2)$	101
$\mathrm{C} 4-\mathrm{H} 4 A \cdots \mathrm{O}^{\mathrm{i}}$	0.97	2.54	$3.435(5)$	153

Symmetry code: (i) $-x+\frac{3}{2}, y+\frac{1}{2},-z+\frac{1}{2}$.

H atoms were positioned geometrically and allowed to ride on their corresponding parent atom at a distance of $0.97 \AA$, with $U_{\text {iso }}$ values freely refined.

Data collection: CrysAlis CCD (Oxford Diffraction, 2001); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1998); software used to prepare material for publication: enCIFer (Allen et al., 2005).

The authors thank the Grant Agency of the Slovak Republic (grant Nos. 1/2449/05, 1/1379/04 and APVT-20007304), as well as the Structural Funds, Interreg IIIA.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. \& Towler, M., J. (2004). J. Appl. Cryst. 37, 335-338.
Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Clark, R. C. \& Reid, J. S. (1995). Acta Cryst. A51, 887-897.
Krebs, F. C. \& Jensen, T. (2003). J. Fluorine Chem. 120, 77-84.
Martin, C. B., Patrick, B. O. \& Cammers-Goodwin, A. (1999). J. Org. Chem. 64, 7807-7812.
Oxford Diffraction (2001). CrysAlis CCD. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
Oxford Diffraction (2005). CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
Reichenbächer, K., Süss, H. I. \& Hulliger, J. (2005). Chem. Soc. Rev. 34, 22-30.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

[^1]: Refinement on F^{2}
 $R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
 $w R\left(F^{2}\right)=0.106$
 $S=1.05$
 977 reflections
 85 parameters
 H -atom parameters constrained

